CHAPTER

3

NODAL AND MESH ANALYSIS

Problem 3.1

Apply nodal analysis to find V_{1} and V_{2}. Then, find the current I that passes through the 2Ω resistance.

Figure 1

Solution

As it is shown in Fig. 2, we define arbitrarily the directions of current I_{1} and I_{2}. The nodal equations have the following form
node $V_{1}: I+I_{1}+3=2 \Rightarrow I+I_{1}=-1$

Nodal and Mesh Analysis
node $V_{2}: I+3=I_{2}+1 \Rightarrow I-I_{2}=-2$

Figure 2
The currents as functions of the node voltages are given by

$$
\begin{aligned}
& I=\frac{V_{1}-V_{2}}{2} \\
& I_{1}=\frac{V_{1}}{3} \\
& I_{2}=\frac{V_{2}}{6}
\end{aligned}
$$

Now, we substitute the current in the node equations:

$$
\begin{aligned}
& \frac{V_{1}-V_{2}}{2}+\frac{V_{1}}{3}=-1 \\
& \frac{V_{1}-V_{2}}{2}-\frac{V_{2}}{6}=-2
\end{aligned}
$$

or

$$
\begin{aligned}
& 5 V_{1}-3 V_{2}=-6 \\
& -3 V_{1}+4 V_{2}=12
\end{aligned}
$$

Thus, we obtain a linear system of two equations, that is symmetric in relative to the main diagonal. The solution of this system gives the following values

Chapter 3

$$
V_{1}=1.091 \mathrm{~V} \text { and } V_{2}=3.818 \mathrm{~V}
$$

Thus,

$$
I=\frac{V_{1}-V_{2}}{2}=-1.364 \mathrm{~A}
$$

Problem 3.2

Apply nodal analysis to find voltage V_{I} and current I_{V}.

Figure 1

Solution

In the circuit of Fig. 2, the application of the KCL leads to the following nodal equations:
node a: $I_{1}+I_{2}+I_{V}=0$
node $\mathrm{b}: I_{1}+0.5=I_{3}$
node c: $I_{3}+I_{4}+I_{v}=0$
The branch currents can be expressed as

$$
\begin{aligned}
& I_{1}=\frac{V_{a}-V_{b}}{2} \\
& I_{2}=\frac{V_{a}}{6}
\end{aligned}
$$

$$
\begin{aligned}
& I_{3}=\frac{V_{b}-V_{c}}{2} \\
& I_{4}=\frac{-V_{c}}{1} \\
& I_{V}=\frac{V_{a}-1-V_{c}}{1}=V_{a}-V_{c}-1
\end{aligned}
$$

Figure 2
Substituting to the nodal equations we get

$$
\begin{aligned}
& \frac{V_{a}-V_{b}}{2}+\frac{V_{a}}{6}+V_{a}-V_{c}-1=0 \\
& \frac{V_{a}-V_{b}}{2}+0.5=\frac{V_{b}-V_{c}}{2} \\
& \frac{V_{b}-V_{c}}{2}+V_{a}-2 V_{c}=1
\end{aligned}
$$

or

$$
\begin{aligned}
& 10 V_{a}-3 V_{b}-6 V_{c}=6 \\
& V_{a}-2 V_{b}+V_{c}=-1 \\
& 2 V_{a}+V_{b}-5 V_{c}=2
\end{aligned}
$$

The solution of this system gives the following values

Chapter 3

$$
V_{a}=1.154 \mathrm{~V}, V_{b}=1.231 \mathrm{~V} \text { and } V_{c}=0.308 \mathrm{~V}
$$

Consequently

$$
V_{I}=V_{b}=1.231 \mathrm{~V}
$$

and

$$
I_{V}=V_{a}-V_{c}-1=-0.154 \mathrm{~A}
$$

Problem 3.3

Find current I_{1}.

Figure 1

Solution

We define, as the reference node, the negative terminal of the voltage source. As it is shown in Fig. 2, the voltages at nodes c and d are known. Therefore, we must obtain the nodal equations for the other two nodes a and b :

Figure 2

Nodal and Mesh Analysis
node a: $I_{1}+I_{2}+I_{3}=1$
node b: $I_{2}=1+I_{5}$
Also

$$
\begin{aligned}
& V_{a}-V_{b}=V_{1} \\
& V_{c}=2 V_{1}=2 V_{a}-2 V_{b}
\end{aligned}
$$

The currents can be expressed as

$$
\begin{aligned}
& I_{1}=V_{a}-V_{c}=V_{a}-\left(2 V_{a}-2 V_{b}\right)=-V_{a}+2 V_{b} \\
& I_{2}=\frac{V_{a}-V_{b}}{4} \\
& I_{3}=\frac{V_{a}-V_{d}}{5}=\frac{V_{a}}{5} \\
& I_{4}=\frac{V_{c}-V_{d}}{3}=\frac{2 V_{a}-2 V_{b}}{3} \\
& I_{5}=\frac{V_{b}}{2}
\end{aligned}
$$

Substituting the currents in the nodal equations we get

$$
\begin{aligned}
& -V_{a}+2 V_{b}+\frac{V_{a}-V_{b}}{4}+\frac{V_{a}}{5}=1 \Rightarrow-11 V_{a}+35 V_{b}=20 \\
& \frac{V_{a}-V_{b}}{4}=1+\frac{V_{b}}{2} \Rightarrow V_{a}-3 V_{b}=4
\end{aligned}
$$

Consequently

$$
\begin{aligned}
& V_{a}=\frac{\left[\begin{array}{cc}
20 & 35 \\
4 & -3
\end{array}\right]}{\left[\begin{array}{cc}
-11 & 35 \\
1 & -3
\end{array}\right]}=\frac{-60-140}{33-35}=\frac{-200}{-2}=100 \mathrm{~V} \\
& V_{b}=\frac{\left[\begin{array}{cc}
-11 & 20 \\
1 & 4
\end{array}\right]}{\left[\begin{array}{cc}
-11 & 35 \\
1 & -3
\end{array}\right]}=\frac{-44-20}{33-35}=\frac{-64}{-2}=32 \mathrm{~V}
\end{aligned}
$$

Chapter 3

Thus,

$$
I_{1}=-V_{a}+2 V_{b}=-100+64=-36 \mathrm{~A}
$$

Problem 3.4

For the circuit in Fig. 1, find (as a function of the circuit elements) the voltages at nodes a and b.

Figure 1

Solution

We define the currents as it is shown in the circuit in Fig. 2 and we get the equations at nodes a and b.

Figure 2
node a: $I_{s}=I_{1}+I_{b}$
node b: $I_{1}=I_{2}+I_{3}+\beta I_{b}$

Nodal and Mesh Analysis

The currents are equal to

$$
\begin{aligned}
& I_{b}=\frac{E_{a}}{R_{1}}, \\
& I_{1}=\frac{E_{a}-E_{b}}{R_{3}}, \\
& I_{2}=\frac{E_{b}}{R_{2}}, \text { and } \\
& I_{3}=\frac{E_{b}}{R_{L}}
\end{aligned}
$$

Substituting the currents in the nodal equations we get

$$
\begin{aligned}
& I_{s}=\frac{E_{a}-E_{b}}{R_{3}}+\frac{E_{a}}{R_{1}} \\
& \frac{E_{a}-E_{b}}{R_{3}}=\frac{E_{b}}{R_{2}}+\beta \frac{E_{a}}{R_{1}}+\frac{E_{b}}{R_{L}}
\end{aligned}
$$

or

$$
\begin{aligned}
& \left(\frac{1}{R_{1}}+\frac{1}{R_{3}}\right) E_{a}-\frac{1}{R_{3}} E_{b}=I_{s} \\
& \left(\frac{\beta}{R_{1}}-\frac{1}{R_{3}}\right) E_{a}+\left(\frac{1}{R_{3}}+\frac{1}{R_{2}}+\frac{1}{R_{L}}\right) E_{b}=0
\end{aligned}
$$

The solution of the above system gives

$$
E_{a}=\frac{R_{1}\left(R_{3} R_{L}+R_{2} R_{L}+R_{2} R_{3}\right) I_{s}}{R_{3} R_{L}+R_{2} R_{L}+R_{2} R_{3}+R_{1} R_{L}+R_{1} R_{2}+R_{2} R_{L} b}
$$

and

$$
E_{b}=\frac{R_{2} R_{L}\left(R_{1}-b R_{3}\right) I_{s}}{R_{3} R_{L}+R_{2} R_{L}+R_{2} R_{3}+R_{1} R_{L}+R_{1} R_{2}+R_{2} R_{L} b}
$$

Chapter 3

Problem 3.5

Find I in Fig. 1 using mesh analysis.

Figure 1

Solution

We define the mesh currents as shown in the circuit of Fig. 2. We have two obvious equations, i.e. $J_{1}=5 \mathrm{~mA}$ and $J_{3}=-2 \mathrm{~mA}$.

Figure 2
The equation for the second loop has the form

$$
-10000 J_{1}+16000 J_{2}-1000 J_{3}=-1
$$

Substituting the current values we finally get

$$
\begin{aligned}
& -50+16000 J_{2}+2=-1 \\
& \Rightarrow J_{2}=I=\frac{47}{16} \mathrm{~mA}
\end{aligned}
$$

Problem 3.6

Find I in Fig. 1 using mesh analysis.

Figure 1

Solution

We define the mesh currents as in Fig. 2. We observe that

$$
J_{2}=-5 V_{1}
$$

Figure 2
Then, as a second step, we apply the KVL to mesh 1 and 3:

$$
\begin{aligned}
& 6 J_{1}-4 J_{2}-2 J_{3}=1 \\
& -2 J_{1}-2 J_{2}+5 J_{3}=0
\end{aligned}
$$

However

$$
V_{1}=J_{3} \Rightarrow J_{2}=-5 J_{3}
$$

Substituting the value of J_{2} we lead to the following linear system

Chapter 3

$$
\begin{aligned}
& 6 J_{1}+18 J_{3}=1 \\
& -2 J_{1}+15 J_{3}=0
\end{aligned}
$$

whose solution gives

$$
J_{1}=\frac{5}{42} \mathrm{~A} \text { and } J_{3}=\frac{1}{63} \mathrm{~A}
$$

Therefore

$$
J_{2}=-5 J_{3}=-\frac{5}{63} \mathrm{~A}
$$

and

$$
I=J_{1}-J_{2}=\frac{5}{42}+\frac{5}{63}=0.198 \mathrm{~A}
$$

Problem 3.7

Calculate the voltage V_{a}.

Figure 1

Solution

A node has an obvious voltage of 1 V . The equations at nodes a, b and c are node a:

Nodal and Mesh Analysis

$$
\begin{aligned}
& I_{1}+2=I_{3}+I_{6} \\
& \Rightarrow \frac{1-V_{a}}{5}+2=\frac{V_{a}-V_{b}}{20}+\frac{V_{a}-V_{c}}{1}
\end{aligned}
$$

node b:

$$
3 I_{2}+I_{3}+I_{2}=I_{5}
$$

$$
\Rightarrow 4 \frac{1-V_{b}}{5}+\frac{V_{a}-V_{b}}{20}=\frac{V_{b}-V_{c}}{20}
$$

node c:

$$
\begin{aligned}
& I_{5}+I_{6}=I_{4} \\
& \Rightarrow \frac{V_{b}-V_{c}}{20}+V_{a}-V_{c}=\frac{V_{c}}{4}
\end{aligned}
$$

From the above relations we obtain the following system of linear equations

$$
\begin{aligned}
& 25 V_{a}-V_{b}-20 V_{c}=44 \\
& -V_{a}+18 V_{b}-V_{c}=16 \\
& -20 V_{a}-V_{b}+26 V_{c}=0
\end{aligned}
$$

The solution of this system gives

$$
\begin{aligned}
& V_{a}=4.827 \mathrm{~V} \\
& V_{b}=1.366 \mathrm{~V} \\
& V_{c}=3.766 \mathrm{~V}
\end{aligned}
$$

Chapter 3

Problem 3.8

Find current I_{x} and the node voltages.

Figure 1

Solution

The two nodal equations are
node a: $\frac{V_{a}}{4}+\frac{V_{a}+2-V_{b}}{10}+2 I_{x}=1$
node b: $2 I_{x}+\frac{V_{a}+2-V_{b}}{10}=I_{x}+\frac{V_{b}}{2}$
At node b, the voltage is equal to

$$
V_{b}=5 I_{x}
$$

Substituting V_{b} we get the system

$$
\begin{aligned}
& 7 V_{a}+30 I_{x}=16 \\
& 20 I_{x}-V_{a}=2
\end{aligned}
$$

The solution of the above system gives

$$
I_{x}=0.176 \mathrm{~A} \text { and } V_{a}=1.529 \mathrm{~V}
$$

Therefore

$$
V_{b}=5 I_{x}=0.882 \mathrm{~V}
$$

Problem 3.9

Find current I.

Figure 1

Solution

We have two current sources. Therefore, it is preferable to apply mesh analysis with obvious equations. Specifically, we observe that

$$
J_{3}=-0.5 \mathrm{~A} \text { and } J_{4}=-1.0 \mathrm{~A}
$$

Figure 2
Writing KVL for mesh 1 and mesh 2, we obtain

$$
5 J_{1}-3 J_{2}=2
$$

Chapter 3

$$
-3 J_{1}+9 J_{2}-J_{3}-5 J_{4}=-4 \Rightarrow-3 J_{1}+9 J_{2}=-9.5
$$

The solution of the above system of linear equations gives

$$
J_{1}=-0.292 \mathrm{~A} \text { and } J_{2}=-1.153 \mathrm{~A}
$$

Therefore

$$
I=J_{2}-J_{3}=-0.653 \mathrm{~A}
$$

Problem 3.10

Use nodal analysis to find current I_{1}.

Figure 1

Solution

As we can see in Fig. 2, there is a supernode that includes nodes b and c. The equations at supernode and at node a, are supernode:

$$
\begin{equation*}
I_{1}+I_{3}=I_{4}+I_{5} \tag{1}
\end{equation*}
$$

node a:

$$
\begin{equation*}
I_{1}+I_{2}+I_{3}=1 \tag{2}
\end{equation*}
$$

From the supernode we also have the following equation

$$
\begin{equation*}
V_{b}-V_{c}=5 \tag{3}
\end{equation*}
$$

Figure 2
The node currents can be expressed as

$$
\begin{align*}
& I_{1}=V_{a}-V_{b} \tag{4}\\
& I_{2}=\frac{V_{a}}{6} \tag{5}\\
& I_{3}=\frac{V_{a}-V_{c}}{10} \tag{6}\\
& I_{4}=\frac{V_{b}}{3} \tag{7}\\
& I_{5}=\frac{V_{c}}{4} \tag{8}
\end{align*}
$$

Substituting the above relations in Eqs. (1) and (2) we get

$$
\begin{align*}
& V_{a}-V_{b}+\frac{V_{a}-V_{c}}{10}=\frac{V_{b}}{3}+\frac{V_{c}}{4} \tag{9}\\
& V_{a}-V_{b}+\frac{V_{a}}{6}+\frac{V_{a}-V_{c}}{10}=1 \tag{10}
\end{align*}
$$

or

$$
\begin{align*}
& 33 V_{a}-40 V_{b}-10.5 V_{c}=0 \tag{11}\\
& 76 V_{a}-60 V_{b}-6 V_{c}=60 \tag{12}
\end{align*}
$$

Eq. (3), (11) and (12) form a system of three equations with three unknowns. The solution of this system gives

$$
\begin{equation*}
V_{a}=V_{b}=3 \mathrm{~V} \text { and } V_{c}=-2 \mathrm{~V} \tag{13}
\end{equation*}
$$

Chapter 3

Therefore

$$
\begin{equation*}
I_{1}=V_{a}-V_{b}=0 \mathrm{~A} \tag{14}
\end{equation*}
$$

Problem 3.11

For the circuit in Fig. 1 find I if $V_{2}=0$.

Figure 1

Solution

In the circuits of Fig. 2, we have the following equation at nodes V_{1} and V_{2} :

$$
\begin{aligned}
& \frac{V_{1}-10}{5}+\frac{V_{1}}{10}+\frac{V_{1}-V_{2}}{10}=0 \\
& \frac{V_{2}-V_{1}}{10}+\frac{V_{2}}{20}+2 I_{1}=I
\end{aligned}
$$

However

$$
V_{2}=0 \mathrm{~V}
$$

and

$$
I_{1}=\frac{V_{1}}{10}
$$

Figure 2
Therefore

Nodal and Mesh Analysis

$$
\frac{V_{1}-10}{5}+\frac{V_{1}}{10}+\frac{V_{1}}{10}=0 \Rightarrow V_{1}=5 \mathrm{~V}
$$

and

$$
\begin{aligned}
& \frac{V_{2}-V_{1}}{10}+\frac{V_{2}}{20}+2 I_{1}=I \\
& \Rightarrow \frac{-V_{1}}{10}+2 \frac{V_{1}}{10}=I \Rightarrow I=\frac{V_{1}}{10}=0.5 \mathrm{~A}
\end{aligned}
$$

Problem 3.12

Use mesh analysis to find the voltage V_{x}.

Figure 1

Solution

Let as define the currents loops as in Fig. 2.

Figure 2
We have the following obvious equations

Chapter 3

$$
J_{1}=5 \mathrm{~A} \quad \text { and } \quad J_{3}=\frac{V_{x}}{2}
$$

The equation in the second loop is

$$
-2 J_{1}+6 J_{2}-4 J_{3}=6
$$

Substituting the current J_{1} we obtain

$$
\begin{aligned}
& -10+6 J_{2}-2 V_{x}=6 \\
& \Rightarrow J_{2}=\frac{8+V_{x}}{3}
\end{aligned}
$$

However, in the 2Ω resistor we have

$$
V_{x}=2\left(J_{1}-J_{2}\right)=10-2 J_{2}
$$

Therefore

$$
J_{2}=\frac{8+10-2 J_{2}}{3} \Rightarrow J_{2}=\frac{18}{5} \mathrm{~A}
$$

Thus,

$$
V_{x}=10-2 J_{2}=10-2 \frac{18}{5} \Rightarrow V_{x}=\frac{14}{5} \mathrm{~V}
$$

Problem 3.13

Determine the mesh currents.

Figure 1

From the current source it is obvious that $J_{3}=2 \mathrm{~A}$. Also

$$
\begin{aligned}
& I=J_{2}-J_{3} \\
\Rightarrow & I=J_{2}-2
\end{aligned}
$$

The KVL in loops $1 \& 2$ gives the following equations

$$
\begin{aligned}
& 2 J_{1}-2 J_{3}=4-2 I \\
& I=2 I-6
\end{aligned}
$$

or

$$
\begin{aligned}
& J_{1}+J_{2}=6 \\
& I=6 \Rightarrow J_{2}-2=6 \Rightarrow J_{2}=8 \mathrm{~A}
\end{aligned}
$$

Therefore

$$
J_{1}+8=6 \Rightarrow J_{1}=-2 \mathrm{~A}
$$

Problem 3.14

In the circuit of Fig. 1 determine:
(a) $A_{i}=\frac{I_{c}}{I_{b}}$
(b) $A_{V}=\frac{V_{c e}}{V_{b e}}$

Figure 1

Solution

(a)We define the loop currents as in Fig. 2.

Chapter 3

From the first loop we have $J_{1}=I_{b}$, and

$$
\begin{aligned}
& \left(R_{g}+R_{1}\right) J_{1}=V_{g}+\mu V_{c e} \\
& \Rightarrow J_{1}=I_{b}=\frac{V_{g}+\mu V_{c e}}{R_{g}+R_{1}}
\end{aligned}
$$

From the second loop we obtain

Figure 2

$$
\begin{aligned}
& J_{2}=-a I_{b} \\
& \Rightarrow J_{2}=-a \frac{V_{g}+\mu V_{c e}}{R_{g}+R_{1}}
\end{aligned}
$$

From the third loop we have $J_{3}=I_{c}$, and

$$
\begin{aligned}
& -R_{2} J_{2}+\left(R_{2}+R_{L}\right) J_{3}=0 \\
& \Rightarrow J_{3}=I_{c}=\frac{R_{2}}{R_{2}+R_{L}} J_{2} \\
& \Rightarrow I_{c}=-a \frac{R_{2}}{R_{2}+R_{L}} \frac{V_{g}+\mu V_{c e}}{R_{g}+R_{1}}
\end{aligned}
$$

If we divide I_{c} and I_{b} we obtain

Nodal and Mesh Analysis

$$
A_{i}=\frac{I_{c}}{I_{b}}=-a \frac{R_{2}}{R_{2}+R_{L}}
$$

(b) To obtain $A_{V}=\frac{V_{c e}}{V_{b e}}$ we work as follows

$$
\begin{aligned}
A_{V}= & \frac{V_{c e}}{V_{b e}}=\frac{V_{c e}}{R_{1} I_{b}-\mu V_{c e}} \\
& =\frac{I_{c} R_{L}}{R_{1} I_{b}-\mu I_{c} R_{L}}=\frac{A_{i} R_{L}}{R_{1}-\mu R_{L} A_{i}}
\end{aligned}
$$

Thus,

$$
\Rightarrow A_{V}=\frac{-a \frac{R_{2}}{R_{2}+R_{L}} R_{L}}{R_{1}-\mu R_{L}-a \frac{R_{2}}{R_{2}+R_{L}}}=\frac{-a R_{2} R_{L}}{\left(R_{2}+R_{L}\right)\left(R_{1}-\mu R_{L}\right)-a R_{2}}
$$

Problem 3.15

Find R_{1} and R_{2} so that $I_{1}=-0.5 \mathrm{~A}$ and $I_{2}=-2.3 \mathrm{~A}$.

Figure 1

Solution

We have the following loop equations

$$
I_{1} R_{1}+\left(I_{1}-I_{2}\right) R_{2}=5
$$

Chapter 3

$$
\left(I_{2}-I_{1}\right) R_{2}+2 I_{2}=-10
$$

If we replace the values of the currents we get

$$
\begin{aligned}
& -0.5 R_{1}+1.8 R_{2}=5 \\
& -1.8 R_{2}-4.6=-10
\end{aligned}
$$

The solution of this system gives

$$
R_{1}=0.8 \Omega
$$

and

$$
R_{2}=3 \Omega
$$

Problem 3.16

Find R_{1} and R_{2} so that $V_{1}=1 \mathrm{~V}$ and $V_{2}=2 \mathrm{~V}$.

Figure 1

Solution

The nodal equations can be written as

$$
\begin{aligned}
& \frac{V_{1}}{R_{1}}+\frac{V_{1}-V_{2}}{0.5}=3 \\
& \frac{V_{2}}{R_{2}}+\frac{V_{2}-V_{1}}{0.5}=5
\end{aligned}
$$

The solution of this system regarding R_{1} and R_{2}, gives

Nodal and Mesh Analysis

$$
\begin{aligned}
& \frac{V_{1}}{R_{1}}=3-\frac{V_{1}-V_{2}}{0.5} \\
& \Rightarrow R_{1}=\frac{V_{1}}{3-\frac{V_{1}-V_{2}}{0.5}}=0.2 \Omega \\
& \frac{V_{2}}{R_{2}}=5-\frac{V_{2}-V_{1}}{0.5} \\
& \Rightarrow R_{2}=\frac{V_{2}}{5-\frac{V_{2}-V_{1}}{0.5}}=\frac{2}{3} \Omega
\end{aligned}
$$

Problem 3.17

Find I_{1} and I_{2}.

Figure 1

Solution

The circuit, except of the reference node, has three other nodes. We will solve the problem following the nodal method using matrices. The first step is the determination of the branch conductance matrix G. In this matrix the branch conductances $G_{m m}$ are located on the main diagonal and the transconductances $G_{m n}$ are located on the intersection of m th row and nth

Chapter 3

column.
Thus, the branch conductance matrix is equal to

$$
\boldsymbol{G}=\left[\begin{array}{ccc}
\frac{1}{3}+\frac{1}{9}+\frac{1}{2} & -\frac{1}{9} & -\frac{1}{2} \\
-\frac{1}{9} & \frac{1}{9}+\frac{1}{4}+\frac{1}{6}+1 & -1 \\
-\frac{1}{2} & -1 & 1+\frac{1}{2}+\frac{1}{4}
\end{array}\right]
$$

The current matrix is

$$
I=\left[\begin{array}{c}
12+\frac{10}{2} \\
-5 I_{1} \\
6-\frac{10}{2}
\end{array}\right]=\left[\begin{array}{c}
17 \\
-5 I_{1} \\
1
\end{array}\right]
$$

Therefore, we have the following system of linear equations

$$
\left[\begin{array}{ccc}
\frac{1}{3}+\frac{1}{9}+\frac{1}{2} & -\frac{1}{9} & -\frac{1}{2} \\
-\frac{1}{9} & \frac{1}{9}+\frac{1}{4}+\frac{1}{6}+1 & -1 \\
-\frac{1}{2} & -1 & 1+\frac{1}{2}+\frac{1}{4}
\end{array}\right]\left[\begin{array}{c}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right]=\left[\begin{array}{c}
17 \\
-5 I_{1} \\
1
\end{array}\right]
$$

The voltage V_{a} is equal to

$$
V_{a}=3 I_{1} \Rightarrow-5 I_{1}=-5 \frac{V_{a}}{3}
$$

Substituting I_{1} the system becomes

$$
\left[\begin{array}{ccc}
\frac{1}{3}+\frac{1}{9}+\frac{1}{2} & -\frac{1}{9} & -\frac{1}{2} \\
\frac{5}{3}-\frac{1}{9} & \frac{1}{9}+\frac{1}{4}+\frac{1}{6}+1 & -1 \\
-\frac{1}{2} & -1 & 1+\frac{1}{2}+\frac{1}{4}
\end{array}\right]\left[\begin{array}{l}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right]=\left[\begin{array}{c}
17 \\
0 \\
1
\end{array}\right]
$$

Solving this system we get

Nodal and Mesh Analysis

$$
\begin{aligned}
& V_{a}=13.19 \mathrm{~V} \\
& V_{b}=-16.916 \mathrm{~V} \\
& V_{c}=-5.326 \mathrm{~V}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& I_{1}=\frac{V_{a}}{3}=4.397 \mathrm{~A} \\
& I_{2}=\frac{V_{c}}{4}=-1.332 \mathrm{~A}
\end{aligned}
$$

Problem 3.18

Find I_{o} in the circuit in Fig. 1.

Figure 1

Solution

This circuit has three nodes except of the reference node. As in the previous problem, we will solve the problem following the nodal method using matrices. The branch conductance matrix is equal to

Chapter 3

$$
\boldsymbol{G}=\left[\begin{array}{ccc}
\frac{1}{2}+\frac{1}{4}+\frac{1}{2} & -\frac{1}{4} & -\frac{1}{2} \\
-\frac{1}{4} & \frac{1}{5}+\frac{1}{0.5}+\frac{1}{4} & -\frac{1}{0.5} \\
-\frac{1}{2} & -\frac{1}{0.5} & \frac{1}{0.5}+\frac{1}{2}+\frac{1}{5}
\end{array}\right]
$$

The current matrix is equal to

$$
\boldsymbol{I}=\left[\begin{array}{c}
-0.5+\frac{2}{2}-1 \\
\frac{10}{5}+\frac{0.5}{0.5} \\
1-\frac{0.5}{0.5}
\end{array}\right]=\left[\begin{array}{c}
-0.5 \\
3 \\
0
\end{array}\right]
$$

Therefore we have the following linear system of equations

$$
\left[\begin{array}{ccc}
\frac{1}{2}+\frac{1}{4}+\frac{1}{2} & -\frac{1}{4} & -\frac{1}{2} \\
-\frac{1}{4} & \frac{1}{5}+2+\frac{1}{4} & -2 \\
-\frac{1}{2} & -2 & 2+\frac{1}{2}+\frac{1}{5}
\end{array}\right]\left[\begin{array}{l}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right]=\left[\begin{array}{c}
-0.5 \\
3 \\
0
\end{array}\right]
$$

The solution of the above system gives

$$
\begin{aligned}
& V_{a}=1.87 \mathrm{~V} \\
& V_{b}=4.296 \mathrm{~V} \\
& V_{c}=3.528 \mathrm{~V}
\end{aligned}
$$

Therefore

$$
I_{\mathrm{o}}=\frac{V_{c}}{5}=0.705 \mathrm{~A}
$$

Problem 3.19

Find $V_{y x}$ in the circuit in Fig. 1 using mesh analysis.

Figure 1

Solution

In the circuit of Fig. 2 we observe that $I_{3}=2 \mathrm{~A}$ and $I_{4}=-3 \mathrm{~A}$. The mesh equations for meshes 1 and 2, respectively, are

$$
\begin{aligned}
& 30 J_{1}-10 J_{2}-20(2)=10-2 \\
& -10 J_{1}+26 J_{2}-4(2)-12(-3)=2
\end{aligned}
$$

or
$30 J_{1}-10 J_{2}=48$
$-10 J_{1}+26 J_{2}=-26$

Figure 2
The solution of the above system is

$$
J_{1}=1.453 \mathrm{~A}
$$

Chapter 3

$$
J_{2}=-0.441 \mathrm{~A}
$$

Finally, the voltage $V_{y x}$ is calculated as

$$
V_{y x}=8 \times 2+4\left(2-J_{2}\right)+10\left(J_{1}-J_{2}\right)=44.706 \mathrm{~V}
$$

Problem 3.20

Determine the voltages at the nodes for the circuit in Fig. 1.

Figure 1

Solution

As it is shown in Fig. 2, nodes 1 and 2 and nodes 3 and 4 as well, define supernodes. The equations for the two supernodes can be written as

$$
\begin{align*}
& I_{1}+I_{2}=10+I_{3} \tag{1}\\
& I_{1}=I_{3}+I_{4}+I_{5} \tag{2}
\end{align*}
$$

The branch currents are then substituted in terms of the circuit node voltages:

$$
\begin{align*}
& \frac{V_{1}-V_{4}}{3}+\frac{V_{1}}{2}=10+\frac{V_{3}-V_{2}}{6} \Rightarrow 5 V_{1}+V_{2}-V_{3}-2 V_{4}=60 \tag{3}\\
& \frac{V_{1}-V_{4}}{3}=\frac{V_{3}-V_{2}}{6}+\frac{V_{3}}{4}+\frac{V_{4}}{1} \Rightarrow 4 V_{1}+2 V_{2}-5 V_{3}-16 V_{4}=0 \tag{4}
\end{align*}
$$

We need two additional equations. From the supernode we can observe that

$$
\begin{equation*}
V_{1}-V_{2}=20 \tag{5}
\end{equation*}
$$

Figure 2
At node 4 we also have the following equation

$$
\begin{align*}
& I_{1}=3 V_{R}+I_{5} \Rightarrow \frac{V_{1}-V_{4}}{3}=3\left(V_{1}-V_{4}\right)+V_{4} \tag{6}\\
& \Rightarrow 8 V_{1}-5 V_{4}=0 \tag{7}
\end{align*}
$$

The solution of the system of equations (3), (4), (5) and (7) gives

$$
V_{1}=10.714 \mathrm{~V}, V_{2}=-9.286 \mathrm{~V}, V_{3}=-50 \mathrm{~V} \text { and } V_{4}=17.143 \mathrm{~V}
$$

Problem 3.21

Find $\mathrm{V}_{a b}$ in the circuit in Fig. 1.

Figure 1

Solution

Chapter 3

In the circuit of Fig. 2, the equation at node a has the form

$$
\frac{V_{a}}{3}+6+3+\frac{V_{a}-10}{5}=0
$$

Thus,

$$
V_{a}=V_{a b}=-13.125 \text { Volts }
$$

Figure 2

Problem 3.22

Find $V_{a b}$ in the circuit in Fig. 1.

Figure 1

Solution

(a) Nodal technique.

The nodal equations are

$$
\begin{aligned}
& \frac{V_{a}-V_{1}}{1}+\frac{V_{a}-V_{b}}{3}+I_{2}=I_{1} \Rightarrow \frac{4}{3} V_{a}-\frac{1}{3} V_{b}=I_{1}-I_{2}+V_{1} \\
& \frac{V_{a}-V_{b}}{3}+I_{2}=\frac{V_{b}-V_{2}}{4} \Rightarrow \frac{1}{3} V_{a}-\frac{7}{12} V_{b}=-I_{2}-\frac{V_{2}}{4}
\end{aligned}
$$

From this system we obtain

$$
V_{a}=\frac{7 I_{1}-3 I_{2}+7 V_{1}+V_{2}}{8}
$$

$$
V_{b}=\frac{I_{1}+3 I_{2}+V_{1}+V_{2}}{2}
$$

Therefore

$$
V_{a b}=\frac{3 I_{1}-15 I_{2}+3 V_{1}-3 V_{2}}{8}
$$

(b) Mesh technique.

As we can see in Fig. 2, we suitably choose the loops in order to have the obvious equations $J_{1}=I_{1}$ and $J_{3}=I_{2}$. Thus, we need to extract only the equation in the second loop:

$$
(1+3+4) J_{2}-J_{1}-3 J_{3}=V_{1}-V_{2} \Rightarrow J_{2}=\frac{I_{1}+3 I_{2}+V_{1}-V_{2}}{8}
$$

Figure 2
Finally

$$
V_{a b}=3\left(J_{2}-J_{3}\right)=\frac{3 I_{1}-15 I_{2}+3 V_{1}-3 V_{2}}{8}
$$

Chapter 3

Problem 3.23

In the circuit of Fig. 1
(a) Obtain the voltages V_{a} and V_{b}.
(b) Calculate the power in the current source of 9A and find if this source absorbs or delivers power.
(c) Calculate the power in all sources and resistors and confirm the power balance.

Figure 1

Solution

(a) Although we want the node voltages it is better to solve the problem using mesh analysis. This is because we can easily obtain the loop currents from the current sources. Specifically, for the circuit in Fig. 2 we conclude that

$$
J_{1}=14 \mathrm{~A}, J_{2}=9 \mathrm{~A}, J_{3}=-16 \mathrm{~A} \text { and } J_{4}=-6 \mathrm{~A}
$$

Current I_{x} is equal to

$$
I_{x}=J_{4}-J_{3}=-6-(-16)=10 \mathrm{~A}
$$

The voltages V_{a} and V_{b} are

$$
\begin{aligned}
& V_{a}=-20 J_{2}+41\left(J_{1}-J_{2}\right)+7.5 I_{x}=100 \mathrm{~V} \\
& V_{b}=5\left(J_{2}-J_{3}\right)+7.5 I_{x}=200 \mathrm{~V}
\end{aligned}
$$

(b) The power in each source is equal to

$$
P_{9}=V_{a b} I_{a b}=\left(V_{a}-V_{b}\right) 9=-900 \mathrm{~W}
$$

Nodal and Mesh Analysis

$$
\begin{aligned}
& P_{16}=-\left(V_{b}-V_{f}\right) 16=-16\left[5\left(J_{2}-J_{3}\right)+3.5 J_{x}-15 J_{3}\right]=-6400 \mathrm{~W} \\
& P_{14}=-14 V_{c}=-14\left[41\left(J_{1}-J_{2}\right)+7.5\left(J_{4}-J_{3}\right)\right]=-3920 \mathrm{~W} \\
& P_{6}=-6 V_{e}=-6\left(-3.5 I_{x}+7.5 I_{x}\right)=-240 \mathrm{~W} \\
& P_{\text {dep }}=\left(J_{1}-J_{4}\right)\left(7.5 I_{x}\right)=1500 \mathrm{~W}
\end{aligned}
$$

Thus, all independent sources deliver power to the circuit, whereas the dependent source absorbs power.
(c) The power absorbed in each resistance is equal to

$$
\begin{aligned}
& P_{20}=20\left(J_{2}\right)^{2}=1620 \mathrm{~W} \\
& P_{5}=5\left(J_{2}-J_{3}\right)^{2}=3125 \mathrm{~W} \\
& P_{15}=15\left(J_{3}\right)^{2}=3840 \mathrm{~W} \\
& P_{41}=41\left(J_{2}-J_{1}\right)^{2}=1025 \mathrm{~W}
\end{aligned}
$$

Figure 2

$$
P_{3.5}=3.5\left(J_{x}\right)^{2}=350 \mathrm{~W}
$$

From the above we conclude that

$$
\begin{aligned}
& P_{\text {delivered }}=P_{9}+P_{16}+P_{14}+P_{6}=-11460 \mathrm{~W} \\
& P_{\text {absorbed }}=P_{3.5}+P_{20}+P_{5}+P_{15}+P_{41}+P_{3.5}=11460 \mathrm{~W}
\end{aligned}
$$

Chapter 3

Problem 3.24

(a) Find the node voltages in the circuit in Fig. 1.
(b) Confirm the power balance.

Figure 1

Solution

(a) In Fig. 2 we observe that

$$
J_{k}=k \mathrm{~A}, k=1,2, \ldots, 8
$$

Now, the node voltages are calculated as follows

$$
\begin{aligned}
& V_{a}=8\left(J_{8}-J_{1}\right)=8(8-1)=56 \mathrm{~V} \\
& V_{b}=1\left(J_{1}-J_{2}\right)=(1-2)=-1 \mathrm{~V} \\
& V_{c}=2\left(J_{2}-J_{3}\right)=2(2-3)=-2 \mathrm{~V} \\
& V_{d}=3\left(J_{3}-J_{4}\right)=3(3-4)=-3 \mathrm{~V} \\
& V_{e}=4\left(J_{4}-J_{5}\right)=4(4-5)=-4 \mathrm{~V} \\
& V_{f}=5\left(J_{5}-J_{6}\right)=5(5-6)=-5 \mathrm{~V} \\
& V_{g}=6\left(J_{6}-J_{7}\right)=6(6-7)=-6 \mathrm{~V} \\
& V_{h}=7\left(J_{7}-J_{8}\right)=7(7-8)=-7 \mathrm{~V}
\end{aligned}
$$

Figure 2
(b) The power in each current source is equal to

$$
\begin{aligned}
& P_{1}=1\left(V_{a}-V_{b}\right)=1(56+1)=57 \mathrm{~W} \\
& P_{2}=2\left(V_{b}-V_{c}\right)=2(-1+2)=2 \mathrm{~W} \\
& P_{3}=3\left(V_{c}-V_{d}\right)=3(-2+3)=3 \mathrm{~W} \\
& P_{4}=4\left(V_{d}-V_{e}\right)=4(-3+4)=4 \mathrm{~W} \\
& P_{5}=5\left(V_{e}-V_{f}\right)=5(-4+5)=5 \mathrm{~W} \\
& P_{6}=6\left(V_{f}-V_{g}\right)=6(-5+6)=6 \mathrm{~W} \\
& P_{7}=7\left(V_{g}-V_{h}\right)=7(-6+7)=7 \mathrm{~W} \\
& P_{8}=8\left(V_{h}-V_{a}\right)=8(-7-56)=-504 \mathrm{~W}
\end{aligned}
$$

From the above results it is clear that only the source of 8A delivers power to the circuit. The total power of the sources is equal to

$$
P_{s}=\sum_{i=1}^{8} P_{i}=-420 \mathrm{~W}
$$

On the other hand, the total absorbed power by the resistors is

Chapter 3

$$
P_{r}=\sum_{i=1}^{8} R_{i} I_{R_{i}}^{2}=1 \times 1^{2}+2 \times 1^{2}+\ldots+7 \times 1^{2}+8 \times 7^{2}=420 \mathrm{~W}
$$

Thus, we find that the delivered power is equal to the absorbed power.

Problem 3.25

For the circuit in Fig. 1 find the node voltages and the power of each source. What is the total power delivered by the sources to the circuit?

Figure 1

Solution

(b) Because of the short circuit, the voltage at node h is zero. Therefore, due to the voltage sources we have

$$
V_{a}=12 \mathrm{~V}, V_{c}=8 \mathrm{~V} \text { and } V_{f}=-6 \mathrm{~V}
$$

The application of KCL in b, d, e and g nodes gives the following equations node $\mathrm{b}: \quad \frac{V_{b}-12}{4}+\frac{V_{b}-8}{2}=2 \Rightarrow V_{b}=12 \mathrm{~V}$
node d: $\quad \frac{V_{d}}{1}+\frac{V_{d}-8}{11}=8 \Rightarrow V_{d}=8 \mathrm{~V}$
node e: $\frac{V_{e}}{5}+\frac{V_{e}+6}{10}=-3 \Rightarrow V_{e}=-12 \mathrm{~V}$
node g: $\frac{V_{g}+6}{6}+\frac{V_{g}-12}{3}=-4 \Rightarrow V_{g}=-2 \mathrm{~V}$
(b) In order to calculate the power at each one of the voltage sources we must determine the currents of the sources. We consider that the direction of the currents in the voltage sources is from + to - . Therefore
Source 12 V

$$
I_{12}=\frac{V_{g}-12}{3}+\frac{V_{b}-12}{4}=\frac{-2-12}{3}+\frac{12-12}{4}=-\frac{14}{3} \mathrm{~A}
$$

Power: $\quad P_{V 12}=12 I_{12}=-56 \mathrm{~W}$

Source 8 V

$$
I_{8}=\frac{V_{d}-8}{11}+\frac{V_{b}-8}{2}=\frac{8-8}{11}+\frac{12-8}{2}=2 \mathrm{~A}
$$

Power: $\quad P_{V 8}=8 I_{8}=16 \mathrm{~W}$

Source 6 V

$$
I_{6}=\frac{-6-V_{e}}{10}+\frac{-6-V_{g}}{6}=\frac{-6+12}{10}+\frac{-6+2}{6}=\frac{-1}{15} \mathrm{~A}
$$

Power: $P_{V 6}=6 I_{6}=-\frac{6}{15}=-0.4 \mathrm{~W}$
We know the voltages of the current sources. Therefore
Source 2 A
Power: $P_{I 2}=2\left(-V_{b}\right)=2(-12)=-24 \mathrm{~W}$
Source 8 A
Power: $P_{I 8}=8\left(-V_{d}\right)=8(-8)=-64 \mathrm{~W}$
Source 3 A
Power: $P_{I 3}=3 V_{e}=3(-12)=-36 \mathrm{~W}$
Source 4 A
Power: $P_{I 4}=4 V_{g}=4(-2)=-8 \mathrm{~W}$
Thus, the total delivered power by the sources is equal to

Chapter 3

$$
\begin{aligned}
P_{\mathrm{s}, \text { total }} & =P_{V 12}+P_{V 8}+P_{V 6}+P_{I 2}+P_{I 8}+P_{I 3}+P_{I 4} \\
& =-56+16-0.4-24-64-36-8=-172.4 \mathrm{~W}
\end{aligned}
$$

Problem 3.26

For the circuit in Fig. 1 determine V_{0} and I_{0}.

Figure 1

Solution

The two current sources are connected in parallel. Thus, they can be substituted with a current source of $2-0.2 V_{0}$. The new equivalent circuit is depicted in Fig. 2. The application of the KVL in the three loops gives

$$
\begin{align*}
& J_{1}=0.2 V_{\mathrm{o}}-2 \tag{1}\\
& -10 J_{1}+20 J_{2}-10 J_{3}=-4 I_{\mathrm{o}} \tag{2}\\
& 60 J_{1}-10 J_{2}+100 J_{3}=100+4 I_{\mathrm{o}} \tag{3}
\end{align*}
$$

Also

$$
\begin{equation*}
V_{\mathrm{o}}=10 \mathrm{~J}_{2} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{\mathrm{o}}=J_{1}+J_{3}=0.2 V_{\mathrm{o}}-2+J_{3} \tag{5}
\end{equation*}
$$

Figure 2

$$
\begin{equation*}
\Rightarrow I_{0}=2 J_{2}+J_{3}-2 \tag{6}
\end{equation*}
$$

Substituting eq. (4) into eq. (1) yields

$$
\begin{equation*}
J_{1}=2 J_{2}-2 \tag{7}
\end{equation*}
$$

Now, we substitute I_{o} and I_{1} into equations (2) and (3)

$$
\begin{equation*}
-20 J_{2}+20+20 J_{2}-10 J_{3}=-8 J_{2}-4 J_{3}+8 \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
120 J_{2}-120-10 J_{2}+100 J_{3}=100+8 J_{2}+4 J_{3}-8 \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
-8 J_{2}+6 J_{3}=12 \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
102 J_{2}+96 J_{3}=212 \tag{11}
\end{equation*}
$$

The solution of the above system gives the following results

$$
\begin{equation*}
J_{2}=0.087 \mathrm{~A} \text { and } J_{3}=2.116 \mathrm{~A} \tag{12}
\end{equation*}
$$

Thus,

$$
\begin{align*}
& V_{\mathrm{o}}=10 J_{2}=0.87 \mathrm{~V} \tag{13}\\
& I_{\mathrm{o}}=2 J_{2}+J_{3}-2=0.29 \mathrm{~A} \tag{14}
\end{align*}
$$

Chapter 3

Problem 3.27

For the circuit in Fig. 1 determine the node voltages.

Figure 1

Solution

We can observe that there is a voltage source that connects two nodes. Therefore, as it is shown in Fig. 2, we consider a supernode that includes nodes 1 and 2.
We have the following nodal equations:
supernode: $\frac{V_{1}}{4}+\frac{V_{1}-V_{3}}{2}+\frac{V_{2}}{3}=10+4 V_{b}$
node 3: $\frac{V_{3}}{4}+\frac{V_{3}-V_{1}}{2}+\frac{V_{3}-5}{1}+4 V_{b}=0$

Figure 2

Also

$$
\begin{align*}
& I_{a}=\frac{V_{3}}{4} \tag{3}\\
& V_{b}=V_{1}-V_{3} \tag{4}\\
& V_{1}-V_{2}=2 I_{a} \Rightarrow V_{1}-V_{2}=2 \frac{V_{3}}{4} \Rightarrow 2 V_{1}-2 V_{2}-V_{3}=0 \tag{5}
\end{align*}
$$

If we substitute V_{b} from equation (4) into equations (1) and (2) then we obtain the following system of linear equations

$$
\begin{align*}
& -39 V_{1}+4 V_{2}+42 V_{3}=120 \tag{6}\\
& 14 V_{1}-9 V_{3}=20 \tag{7}\\
& 2 V_{1}-2 V_{2}-V_{3}=0 \tag{8}
\end{align*}
$$

The solution of the above system gives

$$
V_{1}=7.673 \mathrm{~V}, V_{2}=2.816 \mathrm{~V} \text { and } V_{3}=9.714 \mathrm{~V}
$$

Problem 3.28

For the circuit in Fig. 1 determine the node voltages.

Figure 1

Solution

We observe that the source of 10 V connects the nodes 1 and 3 . Therefore, as we can see in Fig. 2, a supernode is defined that includes nodes 1 and 3 .

The supernode equation is

Chapter 3

$$
\begin{equation*}
I_{3}=I_{1}+I_{4}+I_{5} \tag{1}
\end{equation*}
$$

Figure 2

At node 2 we have the following equation

$$
\begin{equation*}
I_{3}=I_{1}+5 \tag{2}
\end{equation*}
$$

At the supernode we also have the following obvious equation

$$
\begin{equation*}
V_{1}+10=V_{3} \tag{3}
\end{equation*}
$$

Substituting the currents in equations (1) and (2) with the node voltages we lead to the following system of linear equations:

$$
\begin{align*}
& \frac{V_{2}-V_{3}}{2}=\frac{V_{1}-V_{2}}{2}+\frac{V_{3}}{8}+\frac{V_{1}}{4} \Rightarrow 6 V_{1}-8 V_{2}+5 V_{3}=0 \tag{4}\\
& \frac{V_{2}-V_{3}}{2}=\frac{V_{1}-V_{2}}{2}+5 \Rightarrow-V_{1}+2 V_{2}-V_{3}=10 \tag{5}
\end{align*}
$$

The solution of the system, consisting of the equations (3), (4) and (5), gives the node voltages:

$$
V_{1}=10 \mathrm{~V}, \quad V_{2}=20 \mathrm{~V}, \text { and } V_{3}=20 \mathrm{~V}
$$

Problem 3.29

In the circuit of Fig. 1 determine I_{1}, I_{2} and I_{3}.

Figure 1

Solution

We observe that the circuit includes two current sources. Therefore, it is better to solve the problem by using mesh analysis.

As we can see in Fig. 2, there is a superloop. In the loop 3 it is clear that

$$
J_{3}=4 \mathrm{~A}
$$

At branch c-d we have

$$
J_{1}-J_{2}=1 \mathrm{~A}
$$

The superloop equation is

$$
6 J_{1}+6 J_{2}-6 J_{3}-4 J_{4}=-10
$$

Finally, the KVL in loop 4 yields

$$
-4 J_{2}-12 J_{3}+16 J_{4}=8
$$

Chapter 3

Figure 2
Substituting J_{3} we get the following linear system

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
3 & 3 & -2 \\
0 & -2 & 8
\end{array}\right]\left[\begin{array}{l}
J_{1} \\
J_{2} \\
J_{4}
\end{array}\right]=\left[\begin{array}{c}
1 \\
7 \\
28
\end{array}\right]
$$

whose solution is

$$
J_{1}=3 \mathrm{~A}, J_{2}=2 \mathrm{~A} \text { and } J_{4}=4 \mathrm{~A}
$$

Therefore

$$
\begin{aligned}
& I_{1}=J_{1}-J_{3}=-1 \mathrm{~A} \\
& I_{2}=J_{3}-J_{4}=0 \mathrm{~A} \\
& I_{3}=J_{4}-J_{2}=2 \mathrm{~A}
\end{aligned}
$$

Problem 3.30

In the circuit of Fig. 1:
(a) Find the voltage V_{o} and the current I.
(b) What is the power in the current source?

Nodal and Mesh Analysis

Figure 1

Solution

(a) We apply nodal analysis to the circuit in Fig. 2.

The node equations may be written as
node 1: $\frac{V_{1}-12}{6}+\frac{V_{1}}{3}+\frac{V_{1}-V_{2}}{5}=2 I$
node 2: $\frac{V_{2}}{12}+\frac{V_{2}-19}{4}+\frac{V_{2}-V_{1}}{5}=-2 I$

Figure 2
Also

$$
V_{2}=12 I
$$

Substituting the current I we obtain

Chapter 3

$$
\begin{aligned}
& \frac{V_{1}-12}{6}+\frac{V_{1}}{3}+\frac{V_{1}-V_{2}}{5}=\frac{V_{2}}{6} \Rightarrow 21 V_{1}-11 V_{2}=60 \\
& \frac{V_{2}}{12}+\frac{V_{2}-19}{4}+\frac{V_{2}-V_{1}}{5}=-\frac{V_{2}}{6} \Rightarrow-6 V_{1}+21 V_{2}=142.5
\end{aligned}
$$

The solution of the above system yields

$$
V_{1}=7.54 \mathrm{~V} \text { and } V_{2}=8.94 \mathrm{~V}
$$

Therefore

$$
I=\frac{V_{2}}{12}=0.745 \mathrm{~A}
$$

and

$$
V_{\mathrm{o}}=V_{1}-V_{2}=-1.4 \mathrm{~V}
$$

(b) The power of the current source is equal to

$$
P=-V_{\mathrm{o}} 2 I=-(-1.4) \times 0.75=2.086 \mathrm{~W}
$$

Thus, the current source seems to absorb 2.086 W power.

Problem 3.31

Find the node voltages $v_{1}, v_{2}, v_{3}, v_{4}$ and v_{5}.

Figure 1

As it is shown in Fig. 2, we consider a supernode.
We have the following obvious equations:

$$
\begin{aligned}
& V_{4}-V_{5}=12 \mathrm{~V} \\
& V_{2}-V_{4}=4 I_{x}
\end{aligned}
$$

Also

$$
I_{x}=\frac{V_{3}}{9}
$$

The equation at node 3 is

$$
\frac{V_{3}}{9}+\frac{V_{3}-V_{4}}{5}+\frac{V_{3}-24-V_{2}}{3}=0
$$

Finally, the equation at supernode gives

$$
\frac{V_{3}-V_{4}}{5}+\frac{V_{3}-24-V_{2}}{3}+2-\frac{V_{5}}{12}=0
$$

Figure 2

Eliminating the current I_{x} we will get the following linear system

Chapter 3

$$
\left(\begin{array}{cccc}
0 & 0 & 1 & -1 \\
1 & -\frac{4}{9} & -1 & 0 \\
-\frac{1}{3} & \frac{1}{9}+\frac{1}{5}+\frac{1}{3} & -\frac{1}{5} & 0 \\
-\frac{1}{3} & \frac{1}{5}+\frac{1}{3} & -\frac{1}{5} & -\frac{1}{12}
\end{array}\right)\left(\begin{array}{l}
V_{2} \\
V_{3} \\
V_{4} \\
V_{5}
\end{array}\right)=\left(\begin{array}{c}
12 \\
0 \\
8 \\
6
\end{array}\right)
$$

The solution of this system is

$$
V_{2}=15.975 \mathrm{~V}, V_{3}=22.528 \mathrm{~V}, V_{4}=5.963 \mathrm{~V} \text { and } V_{5}=-6.037 \mathrm{~V}
$$

Thus,

$$
V_{1}=24+V_{2}=39.975 \mathrm{~V}
$$

Problem 3.32

In the circuit of Fig. 1 find
(a) The node voltages
(b) The power in each one of the sources

Figure 1

Solution

(a) We apply nodal analysis.

As it is shown in Fig. 2, we define a supernode that gives the following

Nodal and Mesh Analysis
equations:

$$
\begin{aligned}
& V_{a}-V_{d}=3 \mathrm{~V} \\
& \frac{V_{a}-12}{6}+\frac{V_{a}-V_{b}}{4}+\frac{V_{d}-V_{c}}{6}+\frac{V_{d}}{4}=0 \\
& \Rightarrow 5 V_{a}-3 V_{b}-2 V_{c}+5 V_{d}=24
\end{aligned}
$$

At nodes b and c we also have

$$
\begin{aligned}
& \frac{V_{b}-V_{a}}{4}+\frac{V_{b}}{4}=5 \Rightarrow-V_{a}+2 V_{b}=20 \\
& \frac{V_{c}}{10}+\frac{V_{c}-V_{d}}{6}+5=0 \\
& \Rightarrow-8 V_{c}+5 V_{d}=150
\end{aligned}
$$

The solution of the above system of the four equations gives

$$
V_{a}=03.828 \mathrm{~V}, V_{b}=11.914 \mathrm{~V}, V_{c}=-18.233 \mathrm{~V}
$$

and

$$
V_{d}=0.828 \mathrm{~V}
$$

Figure 2

Chapter 3

(b) The power in the sources can be found as the product of voltage and current. Specifically

$$
P_{12}=12\left(\frac{V_{a}-12}{6}\right)=-16.435 \mathrm{~W} \quad \text { (delivers power to the circuits) }
$$

The current flowing through the 3 V source is equal to the sum of currents that flowing through the 6Ω and 4Ω resistances. Therefore

$$
\begin{aligned}
& P_{3}=3\left(\frac{12-V_{a}}{6}+\frac{V_{b}-V_{a}}{4}\right)=10.151 \mathrm{~W} \text { (absorbs power) } \\
& P_{5}=\left(V_{b}-V_{c}\right)(-5)=-152.802 \mathrm{~W} \text { (delivers power to the circuits) }
\end{aligned}
$$

Problem 3.33

In the circuits of Fig. 1 find:
(a) I_{1} and V_{2}
(b) The power in the current sources 10 A and $3 V_{R}$. Define if these sources deliver or absorb power.

Figure 1

Solution

(a) Using Norton to Thevenin conversion, the circuit takes the equivalent form shown in Fig. 2. In order to solve the circuit, we will apply nodal analysis. As it is shown in the circuit of Fig. 2, a supernode is defined that includes nodes 1 and 2 . In the supernode, we have the following obvious equation

$$
V_{1}-V_{2}=20
$$

Figure 2
The node equations at the supernode and at node 3 are

$$
\begin{aligned}
& 3 V_{R}=I_{1}+I_{2}+I_{3} \Rightarrow 3\left(V_{1}-V_{3}\right)=\frac{V_{1}-V_{3}}{3}+\frac{V_{1}}{2}+\frac{V_{2}-40}{4} \\
& I_{1}=3 V_{R}+I_{4} \Rightarrow \frac{V_{1}-V_{3}}{3}=3\left(V_{1}-V_{3}\right)+\frac{V_{3}}{1}
\end{aligned}
$$

The solution of the above system gives

$$
V_{1}=6.383 \mathrm{~V} \quad V_{2}=-13.17 \mathrm{~V} \text { and } V_{3}=10.21 \mathrm{~V}
$$

Therefore

$$
I_{1}=\frac{V_{1}-V_{3}}{3}=-1.2757 \mathrm{~A}
$$

(b) The current source of 10A absorbs power equal to

$$
P_{10 \mathrm{~A}}=V_{2}(-10)=(-13.17) \times(-10)=136.17 \mathrm{~W}
$$

Finally, the depended source delivers the following power

$$
P_{3 V_{R}}=\left(V_{2}-V_{3}\right)\left(-3 V_{R}\right)=\left(V_{2}-V_{3}\right)\left(-3\left(V_{1}-V_{3}\right)\right)=-273.558 \mathrm{~W}
$$

Problem 3.34

Find I in the circuit in Fig. 1.

Chapter 3

Figure 1

Solution

For pedagogical reasons, we will solve the circuit by applying both mesh and nodal analysis techniques.

Mesh analysis

In the circuit of Fig. 2 we have the following loop equations

$$
\begin{align*}
& 3 I_{1}-I_{2}=2 I_{x}+3 V_{x} \tag{1}\\
& -I_{1}+4 I_{2}-2 I_{3}=-15 \tag{2}\\
& 2 I_{2}+6 I_{3}=2 I_{x} \tag{3}
\end{align*}
$$

Also

$$
\begin{align*}
& I_{2}=I_{x} \tag{4}\\
& V_{x}=2\left(I_{3}-I_{2}\right) \tag{5}
\end{align*}
$$

From equations (3) and (4) we have

$$
\begin{equation*}
2 I_{x}+6 I_{3}=2 I_{x} \Rightarrow I_{3}=0 \tag{6}
\end{equation*}
$$

Figure 2

Therefore, from equations (1) and (2) we obtain

$$
\begin{align*}
& 3 I_{1}-3 I_{2}=3\left(-2 I_{2}\right) \Rightarrow I_{1}=-I_{2} \tag{7}\\
& -I_{1}-4 I_{1}=-15 \Rightarrow I_{1}=3 \mathrm{~A} \tag{8}
\end{align*}
$$

and

$$
I=I_{1}-I_{2}=2 I_{1}=6 \mathrm{~A}
$$

Nodal analysis

From the original circuit we have the following nodal equations:
node a: $\frac{V_{a}-V_{b}}{1}+\frac{V_{a}-3 V_{x}}{2}+\frac{V_{a}-15-V_{c}}{1}=0 \Rightarrow 2.5 V_{a}-V_{b}-V_{c}=15+1.5 V_{x}$
node b: $\quad V_{b}=-2 I_{x}=-2\left(V_{a}-15-V_{c}\right) \Rightarrow 2 V_{a}+V_{b}-2 V_{c}=30$
node c: $\quad V_{a}-15-V_{c}=\frac{V_{c}}{4}+\frac{V_{c}-V_{b}}{2} \Rightarrow 4 V_{a}+2 V_{b}-7 V_{c}=60$
If we multiply eq. (10) by 2 and then subtract it from eq.(11) we will find that $V_{c}=0 \mathrm{~V}$. Since $V_{x}=V_{b}-V_{c}=V_{b}$ from eq. (9) we get

$$
2.5 V_{a}-2.5 V_{b}=15 \Rightarrow I=V_{a}-V_{b}=\frac{15}{2.5}=6 \mathrm{~A}
$$

Chapter 3

Problem 3.35

Find I_{1} in the circuit in Fig. 1.

Figure 1

Solution

The circuit has four nodes. As shown in Figure 2, in order to apply the node method we consider a supernode consisting of nodes 2 and 3. Thus, we have the following nodal equations:
node 1: $\quad I_{1}+I_{2}+I_{3}=2$
supernode: $I_{2}+I_{6}+I_{5}+I_{1}=2$
where

$$
\begin{aligned}
& I_{1}=\frac{E_{1}-E_{2}}{1}, \quad I_{2}=\frac{E_{1}-E_{3}}{3}, \quad I_{3}=\frac{E_{1}+5}{5} \\
& I_{5}=\frac{-E_{2}}{12} \text { and } I_{6}=\frac{-E_{3}}{15}
\end{aligned}
$$

Figure 2

Nodal and Mesh Analysis
Substituting the above expressions to the nodal equations we get

$$
\begin{aligned}
& \frac{E_{1}-E_{2}}{1}+\frac{E_{1}-E_{3}}{3}+\frac{E_{1}+5}{5}=2 \\
& \frac{E_{1}-E_{3}}{3}+\frac{-E_{3}}{15}+\frac{-E_{2}}{12}+\frac{E_{1}-E_{2}}{1}=2
\end{aligned}
$$

or

$$
\begin{aligned}
& 23 E_{1}-15 E_{2}-5 E_{3}=15 \\
& 80 E_{1}-65 E_{2}-24 E_{3}=120
\end{aligned}
$$

But

$$
E_{3}=E_{2}+10
$$

Substituting E_{3} we lead to the following system

$$
\begin{aligned}
& 23 E_{1}-20 E_{2}=65 \\
& 80 E_{1}-89 E_{2}=360
\end{aligned}
$$

The solution of the system is

$$
E_{1}=-3.166 \mathrm{~V} \text { and } E_{2}=-6.89 \mathrm{~V}
$$

Thus,

$$
I_{1}=\frac{E_{1}-E_{2}}{1}=3.725 \mathrm{~A}
$$

Problem 3.36

Find I_{x} in the circuit in Fig. 1.

Figure 1

Chapter 3

The circuit has four loops. We select the loops as shown in Fig. 2 in order to have the following obvious equation

$$
J_{4}=2 \mathrm{~A}
$$

The application of the KVL in the other three loops gives the equations

$$
\begin{aligned}
& 6 J_{1}-2 J_{2}=4 V_{A} \\
& -2 J_{1}+10 J_{2}-3 J_{3}+8 J_{4}=0 \\
& -3 J_{2}+7 J_{3}-3 J_{4}=0
\end{aligned}
$$

In the depended source we also have the relation

$$
V_{A}=J_{1}-J_{2}
$$

Substituting V_{a} we get the system

$$
\begin{aligned}
& J_{1}+J_{2}=0 \\
& -2 J_{1}+10 J_{2}-3 J_{3}=-16 \\
& -3 J_{2}+7 J_{3}=6
\end{aligned}
$$

Figure 2
The solution of the system is

$$
J_{1}=1.253 \mathrm{~A}, J_{2}=-1.253 \mathrm{~A} \text { and } J_{3}=0.32 \mathrm{~A}
$$

Thus,

$$
I_{x}=J_{2}+J_{4}=0.747 \mathrm{~A}
$$

Problem 3.37

In the circuit of Fig. 1 find V_{x} and I_{y}.

Figure 1

Solution

In order to take advantage of the two current sources and simplify the solution, we solve the circuit using mesh analysis. Thus, we select the loops as shown in Fig. 2. It is clear that

$$
I_{4}=-1 \mathrm{~A} \text { and } I_{2}=4 V_{x}
$$

Figure 2
The equations in loops 1 and 3 are

$$
\begin{aligned}
& 12 I_{1}+3 I_{2}-6 I_{3}-I_{4}=10 \\
& -6 I_{1}-2 I_{2}+6 I_{3}=-2 I_{y}
\end{aligned}
$$

Chapter 3

However

$$
I_{y}=I_{1}
$$

and

$$
V_{x}=4\left(I_{1}-I_{3}\right)=4 \mathrm{I}_{y}-4 I_{3} \Rightarrow I_{3}=I_{y}-\frac{1}{4} V_{x}
$$

Thus, the loop equations become

$$
\begin{aligned}
& 12 I_{y}+12 V_{x}-6\left(I_{y}-\frac{1}{4} V_{x}\right)+1=10 \\
& -6 I_{y}-8 V_{x}+6\left(I_{y}-\frac{1}{4} V_{x}\right)=-2 I_{y}
\end{aligned}
$$

or

$$
\begin{aligned}
& 6 I_{y}+13.5 V_{x}=9 \\
& 2 I_{y}-9.5 V_{x}=0
\end{aligned}
$$

Thus, the solution of the above system yields

$$
I_{y}=1.018 \mathrm{~A} \text { and } V_{x}=0.214 \mathrm{~V}
$$

Problem 3.38

In the circuit of Fig. 1 find the power in the voltage source of 4 V .

Figure 1

In the circuit in Fig. 2 we observe that we have the following obvious equations

$$
\begin{aligned}
& V_{a}=4 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}}=5 \mathrm{~V}_{\mathrm{x}} \Rightarrow \mathrm{~V}_{\mathrm{b}}-4=5 \mathrm{~V}_{\mathrm{c}}
\end{aligned}
$$

Figure 2
At node c, the node equation can be written as

$$
\frac{V_{c}}{500}+\frac{V_{c}-4}{300}=20 \times 10^{-3}
$$

From the above equation we get

$$
V_{c}=6.25 \mathrm{~V}
$$

Therefore

$$
\mathrm{V}_{\mathrm{b}}=4+5 \mathrm{~V}_{\mathrm{c}}=35.25 \mathrm{~V}
$$

Now, we can determine I_{4} and I_{5} :

$$
\begin{aligned}
& I_{4}=-I_{1}-I_{6}=-\frac{4}{300}-\frac{6.25}{500}=-25.833 \mathrm{~mA} \\
& \mathrm{I}_{5}=\frac{4-V_{b}}{600}-20 \mathrm{~mA}=-72.083 \mathrm{~mA}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& P_{5 V_{x}}=\left(V_{b}-4\right) I_{5}=-2.253 \mathrm{~W} \\
& P_{4 V}=4 I_{4}=-0.103 \mathrm{~W}
\end{aligned}
$$

Chapter 3

Problem 3.39

Use nodal analysis to find current I_{o}.

Figure 1

Solution

As we can observe in Fig. 2, the circuit has a supernode. The Supernode constraint equation is

$$
\begin{equation*}
V_{c}-V_{d}=3 V_{x} \tag{1}
\end{equation*}
$$

At node a we also have

$$
\begin{equation*}
V_{a}=10 \mathrm{~V} \tag{2}
\end{equation*}
$$

Figure 2

Nodal and Mesh Analysis

The node equations at node b and at supernode are
supernode: $\frac{V_{b}-V_{c}}{4}+2 V_{y}+\frac{-V_{d}}{3}+\frac{10-V_{d}}{2}=0$
node b: $\frac{V_{c}-V_{b}}{4}+4+\frac{10-V_{b}}{1}=0$
We also have

$$
\begin{align*}
& V_{x}=10-V_{d} \tag{5}\\
& V_{y}=10-V_{b} \tag{6}
\end{align*}
$$

Substituting V_{x}, V_{y} into equations (1), (3) and (4) we lead to the following system

$$
\left[\begin{array}{ccc}
0 & 1 & 2 \tag{7}\\
-\frac{7}{4} & -\frac{1}{4} & -\frac{5}{6} \\
-\frac{5}{4} & \frac{1}{4} & 0
\end{array}\right]\left[\begin{array}{l}
V_{b} \\
V_{c} \\
V_{d}
\end{array}\right]=\left[\begin{array}{c}
30 \\
-25 \\
-14
\end{array}\right]
$$

From the above system we get

$$
\begin{equation*}
V_{b}=\frac{38}{11} \mathrm{~V}, V_{c}=-\frac{426}{11} \mathrm{~V} \text { and } V_{d}=\frac{378}{11} \mathrm{~V} \tag{8}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
I_{o}=-\frac{V_{d}}{3}=-\frac{126}{11} \mathrm{~A}=-11.455 \mathrm{~A} \tag{9}
\end{equation*}
$$

